Skinerrian's blog

論理学・哲学・科学史・社会学などに興味があるので、その方面のことを書きます。更新は不定期。

モンテホール問題

『アド・アストラ』にモンテホール問題が出てきたので、久しぶりにこの問題について考え直してみて、ふと気づいたことがあった。メモとして記してみる。

モンテがドアを開けた後で選択肢を変更したほうが正答の確率が上がるというのはパラドキシカルだと感じてしまうのは、モンテが確実にハズレのドアを開けるという点をきちんと考慮できていないから、だと思われる。

比較のために、次のようなケースを考えよう。私が3番目のドアを選びつつ、まだドアは開けないでおく。次に、別の人(どのドアが当たりかは知らない)が2番目のドアを選び、ドアを開けたところハズレだったとする。このとき、私は3番目のドアから1番目のドアに選択を変えるべきだろうか。いや、そんなことはない。どちらが当たる確率も等しいからだ。

このことをもう少し形式的に示してみよう。Aiを「i番目のドアが当たりである」、Biを「モンテがi番目のドアを開ける」という命題とする。なお、私は3番目のドアを選んだと仮定する。このとき、確率の付値は次のようになる。

  • Pr(A1) = Pr(A2) = Pr(A3) = 1/3
  • Pr(B1 | A1) = Pr(B2 | A2) = 0
  • Pr(B1 | A2) = Pr(B2 | A1) = 1
  • Pr(B1 | A3) = Pr(B2 | A3) = 1/2

ポイントとなるのは、2行目と3行目の付値である。1番目のドアが当たりのとき、モンテは絶対に1番目のドアを開けないで、2番目のドアを開ける。この事実こそが、例えば、モンテが2番目のドアを開けたときに1番目のドアが当たりである確率、つまり、Pr(A1 | B2) を計算するときに効いてくる。ベイズの定理を使って計算すると 2/3 となる。

先ほど比較のために挙げたケースでの確率の付値はこれとはまったく異なる。Biを「別の人がi番目のドアを開ける」と解釈すると、2行目と3行目の値はどちらも1/2となるからだ。この場合、選択肢を変えねばならない理由はない。