読者です 読者をやめる 読者になる 読者になる

Skinerrian's blog

論理学・哲学・科学史・社会学などに興味があるので、その方面のことを書きます。更新は不定期。

無限連言

全称量化子`∀’は「無限連言」とも呼ばれるように、連言と相性がよい。そのため[?]

  • ∀x(Px∧Qx) ⇔ ∀xPx∧∀xQx

が成り立つことは容易に想像できる。それに対し、全称量化と選言を組み合わせる場合

  • ∀xPx∨∀xQx ⇒ ∀x(Px∨Qx)

という方向しか成り立たない。例えば、量化のドメインを自然数、Pを奇数、Qを偶数と解釈すると反例ができる。自然数はすべて偶数か奇数だが、自然数は偶数だけであるわけでも、奇数だけで構成されているわけでもない。

全く話は変わるが、古典論理トートロジーに二重否定をつけたものは直観主義でも成り立つ。したがって、排中律の否定(¬(P∨¬P))からは矛盾が導ける。それだけでなく、任意のnについて、¬∧i,n(Pi∨¬Pi)から矛盾が導かれる。つまり、排中律のinstanceを有限個の連言で繋いだものを否定すると矛盾する。では、次の式はどうだろう…。

  • ¬∀x(Px∨¬Px)